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NONLINEAR DIFFUSION OF PULSED MAGNETIC FIELDS

IN PLANAR AND CYLINDRICAL PLASMAS

Albert Haberstich

ABSTRACT

The one-dimensional, one-component, nonlinear diffusion of pulsed
magnetic fields in planar and cylindrical geometries is examined. The
diffusion coefficient  depends abruptly on the current density j associ-
ated with the gradient of the magnetic field., The coefficient  is large
when j > j;, small when j < jy, and depends linearly on j in the interval
jo < j < ji, where jp and j, are given current densities. A traveling
wave solution is obtained in planar geometry and it is found that the
product yj remains continuous in space in the limit (jl - j2) - 0. Ana-
lytic and finite difference solutions of the traveling wave problem are
compared, numerical stability conditions are found, and an estimate of
the numerical error is obtained. The pulsed magnetic field problem is
then solved numerically in the two geometries. Large portions of the
magnetic field profiles exhibit a nearly uniform current density distri-
bution at some time during the diffusion.

I. INTRODUCTION

Plasmas are compressed and heated in theta
and Z pinches by a fast rising external magnetic
field. This magnetic field is produced by an ex-
ternal coil in the theta pinch and by a current
running through the discharge in the Z pinch.

Due to the finite electrical resistivity of
the pinch, the pulsed magnetic field gradually dif-
fuses into the plasma. The rate of diffusion was
measured in both configurations and was found to
be more rapid than expected from classical electri-
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cal resistivity. The diffusion is enhanced dur-
ing the early stage of the pinch when the current
density induced by the magnetic field gradient is
concentrated in a narrow discharge region. The
anomalously large resistivity appears to be due to
a microinstability that is excited when the abso-
lute value j of the current density exceeds a
certain threshold jc.]“—3

This effect can be included in hydromagnetic
calculations by allowing the electrical resistivity

to become anomalous whenever the local value of j

exceeds jc.l-s

The hydromagnetic calculation then
involves solving a highly nonlinear diffusion prob-
lem. We propose to explore some of the analytical
and numerical properties of this diffusion problem.

We write the diffusion equation in a one-
component, one-dimensional form and assume that the
diffusion coefficient u, associated with the elec-
trical resistivity of the plasma, is of the form
shown in Fig. 1. The problem then becomes similar
to a Stefan problem.6 The diffusion coefficient
of the Stefan problem, however, would depend on B
rather than on the spatial derivative of B, There-~
fore, the Stefan solution does not seem to be
directly applicable.

Here we seek a traveling wave solution of the
diffusion equation in planar geometry. We divide
this solution into the three regions, where j > jl’
j < j2’ and j2 <j< jl’ and find that the spatial
width of the transition region j2 <j< j1 remains
finite in the limit (j1 - j2) - 0. The product j,
which is proportional to the electric field in the

plasma, then remains continuous in space.
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Diffusion coefficient u as a function of
the absolute value of the current density j.

Fig. 1.

We also solve the problem numerically using
finite difference explicit and implicit schemes.

We write these schemes in such a way as to conserve
magnetic fluxes. We find that, for small time and
space increments, the numerical solutions can be
stable and that they agree closely with the analytic
traveling wave solution. It appears, therefore,
that the scheme used in our earlier numerical MHD
calculations 1is adequate to handle this type of
diffusion problem, at least in a planar
approximation.

We make use of the explicit difference scheme
to solve basic pulsed magnetic field diffusion prob-
lems in planar and cylindrical geometries, and find
that large portions of the pinch may become part of
the transition region, and may therefore exhibit a

uniform current density distribution.

II. ANALYTIC TRAVELING WAVE SOLUTION IN PLANAR
GEOMETRY

The nonlinear diffusion problem discussed
above can be reduced to the one-dimensional, one-

component diffusion equation

2.2 (;%) , (1

where t is the time, x is the x-coordinate, B is the
magnetic field, and  is the diffusien coefficient
of the form shown in Fig. 1.

In Fig. 1, j = 13B/dx| is the absolute value
of the current density. The coefficients uy and oy
are constants, respectively proportional to the

anomalous and classical resistivities of the plasma.

The transition from uy O U, takes place linearly

over the current density interval j1 to j2. Thus,
Ll2 ) J < j2 ’
_ Mo . :
[ uc + A_] ] jC > .12 S ] 5 jl )
ul S I jl 3
(2)

where
[EETCMESS PO

e Ty Fup) s oand A=y tuy
We assume that iy is always larger or equal to ot
Equations (1) and (2) have an analytic travel-
ing wave solution, which is defined as a solution
that travels undistorted at constant velocity v,
here chosen in the positive x-direction.7 In Fig.
2, B(x,t) then consists of a leading edge x > X,
where j < j2, a transition region X < x <%, where
j2 <jx jl’ and a region x < Xy where j > jl' The
satisfy x, = x,  + vt and

2 1 10

Xy = Xyg + vt. Either X0 or X,y can be chosen

arbitrarily.

boundaries Xy and x

0 | 2 3 4 S
X
Fig. 2. Analytic traveling wave solution for v = 1,
wy = 2, oy = 1, jc = 0.5, and Aj = 0.1.



We solve Egqs. (1) and (2) in the three re-

gions, match boundary conditions at x, and Xy and

1
obtain
Molp X =X
B = expl-v — N
v Ho
x > X, s (3)
uydy X - %
B = exp{-v —m—— .
v ul
x < x; , (4)
and

x - x = %[(2“1 + b) - (b2 + 4 avB)’ch

b + (b2 + 4 avB)%]

4+ b In z(ul ¥ b) s
Xy <x< x2 R (5)
where
Jo = unj
_ _Midp T ey
a = == and b = ——————— ,
Aj " A

The ratio of the magnetic fields B(xl) =B and

B(xz) = B2 at the boundaries of the transition re-

gion follows from Eqs. (3) and (4),

By wydy
B

Hado

N

Taking the spatial derivative of Eqs. (3)

through (5), we obtain the absolute current densi-

ties
. p(__z)
2 o ’
x > Xy , (6)
P _1)
1 Hy ’
x < x s (@))
and
X - x, = i 2a(j; = j)+ b 1n -
1~ v (Jl i) jl >
X S x< Xy . (8)

The width (x2 - xl) of the transition region is a

gpecial case of Eq. (8),

- x, =22 +b1j—2- (9)
X2 xl—v 1L n_]l .

. . 8
It is of interest to note that

lim M
Aj ~ o(x - %X,) = . (10)

l) v

Thus, the transition region width remains finite in
the limit Aj — O. Letting Aj -~ O in Eq. (8), we
find that j becomes a linear function of x in the
transition region and that the product pj, which is
proportional to the electric field in the plasma,

remains continuous throughout x-space.

ITI. NUMERICAL TRAVELING WAVE SOLUTION IN PLANAR
GEOMETRY

Equations (1) and (2) are solved with the fol-
lowing magnetic flux conserving explicit and implicit

difference schemes9

ntl n At n _ N
Bivg " By = (ax)2 {<B1+3/2 Bu-%)

n "
b <Bi+% i- % ] an

and
n+l At (
_B B -
r%l +3 (AX)2 [ i+3/2

53) o1
- (':; - 3™ _% ““] (12)

respectively, where t = n At and x = 1 Ax. The dif-
fusion coefficients “Z and u:+l are given by
.n,nt+l .

My » ']i < ”p) ’

n,ml by n,nbl . n,nkl .,
U, =gu + 5] o) 23y <-1

[l .
U-l ’ Ji >J1 ’
(13)
and
okl 1 B o+l a,ntl




In the regions of uniform u, Eq. (11) is sub-

ject to the numerical stability condition

?% < 1/2, (15)
Ax

whereas Eq. (12) is always st:able.9 The numerical
stability of the explicit scheme in the transition

region is derived in Appendix A and is given by
1

T\
1+AE<1+—‘?-)
Mo Al

At < %

u, < (16)
(Ax)2 c

The advanced diffusion coefficient in the transi-
tion region is not known a priori. We therefore

determine u:+l by the iterative procedure

1 - ntl
ur;+l,m+1 = (1 - &) ™ ,M + A i ,m ,
an
where 0 < A < 1 is a relaxation factor. The dif-

fusion coefficient u?+l,m+l

1l,m

is used in the new

iteration, u:+ is the coefficient used during

- ntl,m

the mth iteration, and is calculated by

Eqs. (13) and (14), using the magnetic fields ob-
tained by the mth iteration.

repeated until ;in+l,m+1

This procedure is
1, mbL
i

The stability of the

approaches to
within a certain accuracy.
implicit scheme then depends on the convergence of
the iteration scheme. The stability condition,

derived in Appendix B, is

At <

2 Ko = t 3 .
(ax) m(z-)+_9_(2_1)
B A Aj A

(18)

The accuracy of the two numerical schemes
can be determined by comparing numerical solutions
of the traveling wave problem with the analytic
solution. The numerical error in the uniform y re-
gions can be predicted. We define the relative

error ¢ as

€= (Fnumerical " Banalytic)//ganalytic ,

and find it to the lowest order in Ax and At,

v4 -1 v“
€=|133 (ax)” + 33 aAtle (19)
33

where the upper and lower signs apply to the ex-
plicit and implicit schemes, respectively. This
numerical error can be eliminated by adding a small
correction &, to the diffusion coefficient. For

small values of Ax and At we find that

=7~z 7 (20)
2 (v Ax) tvt %5

- i
&1_2 2+l (21)
v Ax 12

for the explicit scheme, where v = At/(Ax)z.
The accuracy of the numerical schemes in the
transition region is determined experimentally.
Starting at t = 0, with the initial state pre-
scribéd by Eqs. (3) through (5), we numerically
advance the traveling wave solution shown earlier
in Fig. 2. The values of B at the boundaries
x = 0 and x = 5 are varied at the rates predicted
by Egs. (3) and (4).

rection & to the diffusion coefficient to allow

Here we add the small cor-

for the error anticipated in the regions of con-
stant p, and thus delay the effect of the bounda-
ries x = 0 and x = 5 on the numerical error in the
transition region.

A typical observed error ¢ is shown in Fig.
3 as a function of x at four consecutive times in
the diffusion. The shape of e(x) varies as the
transition region traverses the mesh structure.
A plot of the peak absolute error ‘?l as a func-
tion of time is shown in Fig. &4, whereas (lc‘),
the absolute value of ¢ averaged over the interval
0 <x <5 as a function of time, is shown in Fig.
5. Figures 4 and 5 were obtained with the implicit
scheme with Ax = 0.033. Similar calculations have
been performed with Ax = 0.05 and the two calcula-

tions have been repeated with the explicit scheme.
The peak value of ]?‘ at time nearest t = 0.1

is plotted in Fig. 6 as a function of At for the

The peak

For small

implicit scheme for the two values of Ax.
error is essentially independent of At.
values of At, |?ﬂ is proportional to (Ax)z. Mean
values of (]el) at time t = 0.1 are plotted in Figs.

7 and 8 as functions of At for Ax = 0,05. Figure 7
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Fig. 3. Observed numerical error ¢ at times
t = 0.1, 0.11, 0.12, and 0.13 of the trav-
eling wave solution, Fig. 2, for Ax = 0.033
and At = 5 x 1074, Implicit scheme.
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Fig. 4. Peak error |®] as a function of time for

the conditions of Fig. 2 for Ax = 0.033
and At = 2 x 1074, Implicit scheme.
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Fig. 5. Mean error {]e|) over the interval 0 < x < 5
as a function of time for the conditions of
Pig, 2 for Ax = 0.033 and At = 2 x 1074,
Implicit scheme.
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Fig. 6. Peak value of l@l at time nearest t = 0,1

as a function of At for the conditions of
Fig. 2 with Ax = 0,05 (triangles) and
Ax = 0,033 (circles), Implicit scheme.
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Mean error <!e|> at time t = 0.1 as a
function of At for the conditions of Fig.
2 and Ax = 0,05 . lel averaged over the
interval 0 < x < 5 (triangles) and over
the transition region only (circles).
Implicit scheme,

Fig. 7.

corresponds to the implicit scheme and Fig. 8 to
the explicit solution. The triangles indicate av-
erages over the interval 0 < x < 5, whereas the cir-
cles correspond to averages over the transition re-
gion only., The dashed lines obtained from Eq. (19)
show the error associated with the regions of uni-
form By and Hoe The Ax = 0,033 calculation indi-
cates that for small values of At, <|el> is propor-
tional to (Ax)2 as in the uniform u case. For large
At, <|e]> increases with At in the implicit case.
The large At region is not accessible to the
explicit scheme.

The results obtained in this section indicate
that the explicit and implicit schemes can be
stable and that the numerical errors can be made
negligibly small by choosing a small Ax, which ia
turn calls for a small value of At to satisfy

stability requirements,

IV« DIFFUSION OF PULSED MAGNETIC FIELD IN PLANAR
GEOMETRY

Having established the stability and accuracy
of Eqs. (11) and (12), we can use these schemes to
calculate the diffusion of pulsed magnetic fields
into a semi-infinite plasma, The plasma is uniform

and extends over the region x = O to infinity. The

T T r T TITTTT I T T T 1T T TTT
o stable ! unstable P2 A
] | /
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~—— | /
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! e
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———— ! y’
- -~ ~
~~a I /‘:
1
\\ t /I ]
-6 N i
0k N\ ;) 3
o \I / “ n
- B -
1 po1op ity | AN BREET
103 04 103
At
Fig. 8. Same as Fig. 7, but explicit scheme.

magnetic field is uniform in the region x = 0 to
minug infinity and is pulsed from zero to B = B° at
time t = 0. Thus, in addition to Eqs. (1) and (2),

we must satisfy the initial and boundary conditions.

(22)

Figure 9 shows an explicit solution obtained
with i, = 0.5, Aj = 0.01, By = 2, and by = 0.02,
The magnetic field satisfies Eq. (22) at x = 0,
whereas B = 0 at x = 5, A transition region is
seen to develop. Due to the small value of Aj,
B(x) is nearly linear in the transition region. The

speed at which the transition region propagates can

be predicted as a function of its width. 1In the
limit y, - 0

dx o

S — . (23)

For a semi-infinite plasma, this expression remains
valid as long as the transition region does not

extend to the origin x = 0.

V, DIFFUSION OF PULSED MAGNETIC FIELDS IN
CYLINDRICAL GEOMETRY

The plasma here is cylindrical, axially and
azimuthally symmetric, and has the radius L The
magnetic field can have two components, Bz and BO'

We consider the two cases separately.
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(a) B(x) as a function of time. The dashed line
shows the trajectory of B(xl); B(xz) is close

to the abscissa.

ST T T T T T T T T

I by —
4= classical x2

-
3

X | transition —
2 _
1 —
anomalous

0] |

0 04 08 12 16 20

(b) xy and x, as functions of time.

Fig. 9. Diffusion of pulsed magnetic field in
planar geometry. Bo = 2, up = 2,
ny = 0.02, j. = 0.5, and aj = 0.01.

The Bz field case is typical of a theta pinch.
Bz is uniform in the outer region r > r, and 1is
pulsed from zero to Bz = Bzo at time t = 0. The
initial and boundary conditions are

B s ¥ =T , £t>0 . (24)

The diffusion equation in cylindrical coordinates

becomes

3B OB

_z_ 13 { =

St r or (u ar ) s (25)
where y is now defined in terms of j = ljel, with

: BBz

Je =- S;— >
and j9 = 0 on axis.

Equation (25) can be solved by finite differ-
ence schemes similar to Egqs. (11) and (12). Al-
though the accuracy of these schemes has not been
checked in cylindrical geometry, it is believed to
be comparable to that of the linear schemes. It
might be necessary, however, to study this point
further,

The explicit difference scheme in cylindrical

coordinates can be written as

n+l n _
Bz,t+% - Bz,t+% B

At 1 . n Bn ~ Bn
(Ar)z T vk i+1 Hi41 \ Pz, i+3/2 z,i+}

n n n
R (Bz,i+§ ) Bz,i-%)] ’ (26)

where the Bz flux is conserved. The diffusion coef-

ficient p: is defined in terms of Eq. (13) with

.1 fon _ g
31 T ar (Bz,i+% Bz,i'%) ‘

Figures 10 and 1l show the numerical results
obtained with jc = 0.5, Aj = 0.01, Hy = 2, and
Ho = 0,02, ry and r, are the outer and inner bound-
aries of the transition region, respectively. We
call the case shown in Fig. 10 supercritical, mean-

ing that Bzo >r, jc. The transition region here
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(a) By(r) as a function of time, The dashed line

represents Bz(rl); Bz(rz) is close to the
abscissa.

anomalous

transition

classical

o) o4 08 12 1.6 20

(b) Ty and r, as functions of time.

Fig. 10. Diffusion of pulsed magnetic field in
theta-pinch geometry with yu; = 2,
up = 0.02, j. = 0.5, and Aj = 0.01.

B = 3, supercritical.
zo

can extend over the entire plasma radius. This
situation is not possible in the subcritical case

Bzo < ra jc shown in Fig. 11.

5 T 1
(b)
a .
3 —
r transition 7
o b ] _
- 2 oty
1+ classical -
o I T S B T B
o) 04 08 12 16 20

t
Fig. 11. Same as Fig. 10 with Bzo = 2, subcritical.

The speed of propagation of the transition
region can be predicted in terms of its width

(rl - r2) and in its position. In the limit Hy = 0,

dr2 2r1u1
e . (27)
LT T2

This formula applies as long as the transition
region does not reach the axis or the edge T, of

the plasma column.



The B, field case is similar to a pure Z pinch.
6 BT T T T T T T T T
Be falls as 1/r in the outer region r > L and the L (a)
field at r = r, is pulsed from zero to Be0 at time =
t = 0. The initial and boundary conditions are
0 » T<r, o, t<0 , =
B = 10
B60 s TETr o, t2 0 . (28) l
The diffusion equation becomes B |
3B B
6 _3ud

—= = 2 |K o 2

dt br[r 3r (”36):' ? (29) 05
where | depends on j = ljzl and

1 —

j == =={(rB

12 7T %r < 9) y

The explicit difference scheme is written in 0]e) 1 /1]
the form () 1
B™L L gf

8,1 6,i+3
(a) Be(r) as a function of time. The dashed line
n . X
o represents Bg(ry); Be(rz) is close to the
- _At 5 r+16u+3/2 Bn +3/2 " o Bg i+%) abscissa.
(ar) T\t 6,1 it+3 s
. ST T T T T T T T
My n n — (b) _]
- -r—j-: ri% Be,i‘i“% - ri_% Bs,i‘% » (30) 4
anomalous ]
where the By flux is conserved everywhere except on -1
the axis. The diffusion coefficient u: is defined 3 —
in terms of Eq. (13) with r |
- transition —

Pallfo g g :

i T ar r o \ith To,ivy T Ti-} Ce,i-}3) ° L ]
Figures 12 and 13 show numerical solutions for 1+ classical ]
j., = 0.5, A3 = 0.0, p, = 2, and u, = 0.02. Super- — =

c ! 2 L1 1
and subcritical are now defined as Bso being larger 0] 1
or smaller than rajc/2, respectively, A supercriti- O 04 o8 12 1.6 20
cal Z pinch eventually becomes entirely anomalous, t
whereas a suberitical pinch becomes completely (b) ry and r, as functions of time.
classical. Fig. 12, Diffusion of pulsed magnetic field in Z-
The speed of propagation of the transition pinch geometry with py = 2, yy = 0,02,
. - jo = 0.5, and Aj = 0.01, B, = 1,5
1 - b Je B s
region, in the limit Hy 0, is given by supercritical. go

at!

r, ln(rl/rz) (31)

k-
dc

until the transition region reaches r = 0 or r = T .
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Fig. 13. Same as Fig, 12 with B, = 1.0, subcritical,

Bo

The results obtained in this section indicate
that large regions of both the theta and Z pinches
can become part of the transition region. The cur-

rent density can then be nearly uniform over a

10

large portion of the discharges. This effect per-

sists in the limit Aj = 0. It is related to the

fact that the magnetic flux must be conserved when

o changes to -
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APPENDIX A

STABILITY OF THE EXPLICIT SCHEME IN THE TRANSITION REGION

We expand both B" and Bn+1 to the third order

in 4x about a mesh center point situated in the

transition region and write

n
Bi+§ = ao K} (A'la)
BY . =a +a Ax + a (Ax)2 (A-1b)

i-7 o 1 - 2N ’

B" =a_ =-a, Ax+ a ('gx)2 (A-1c)
i+3/2 ~ %o .1 2 ’
and
" Ly , (A-2a)

itz o
B?+% =b + b, Ax+ b (Ax)2 , (A-2b)

1= o 1 2

ntl 2
= - b A - A-2c¢
Bir3/2 by = by A+ b, (a%) ( )

From Eqs. (13) and (14) and Egs. (A-la) through
(A'lC),

n AL

= + =k - j -
by e Xﬁ (al Jc + a2 AX) (A-3a)
and
n = A - i - X o -
Mirl = Mo + A3 (a1 i, a, aAx) . (A-3b)

After substituting Eqs. (A-la) through (A-3b) into
the explicit difference equation, Eq. (l1), we find

that
- = Lo -
bo a, = 2t a, [“c + X (2a1 JC) ]
To determine the stability of the explicit

scheme, we add a small perturbation of wavelength

2Ax and amplitude e, to B".

(A-5a)

2
Bi-% =a + a) Ax + az(dx) - e,

s (A-5b)

2
Bi+3/2 =a, -2 Ax + az(Ax) N .

o (A-5¢)

and

€
n _ A - s ~ _a .
Bipl = Mg + EF[%I Je (?2 Ax 2 Ax)] . (A~6b)

We assume that this perturbation gives rise to a

similar perturbation e in Bn+l, such that

BZ:; =b_ + € > (a-7a)
BlTL = by + b axt b, (007 - ¢y, (A-7b)
and
B:;/z =b, - b M+ bz(Ax)z - o - (A-7c)

Substituting Eqs. (A-5a) through (A-7c¢) into the

difference equation, Eq. (l1), we obtain

(b, - ao) + (e - e) =

€

2At[a2 -2 ——5—2] [.Jc + M2 - jc):‘
(ax)

(A-8)
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We now subtract the unperturbed Eq. (A-4) from Eq.

(A-8), solve for €y» and find

6 =Y & , (A-9)

where

=1 - tt e -3 -
y=1-4 - [,c + 2 (2 JC)] (A-10)

For stability, y must satisfy |y| « 1, that is,
6By e B a <50t s 2. (am1D)
c Aj 1 c’t -
(ax)

The worst condition occurs for a = jc + Aj/2. The

stability condition then becomes

- 1 (A-12)

()’ € L+ (1 + 15)

Equation (A-12) is plotted in Fig. A-1 where it is
compared against stability limits observed experi-

mentally on the computer.

1
B ke
1?2
Ot
[ le]]
000!

(e]0]] 01 : ] 10

Fig. A-1. Explicit stability limits of At/(Ax)z
as functions of Aj/jc for sevefal values
of M;/uc. The curves are calculated
from Eq. (A-12). The squares are limits
observed with X, - x,; = 2.04 and Ax =

- 0.05.

APPENDIX B

STABILITY OF THE IMPLICIT SCHEME IN THE TRANSITION REGION

We assume that the implicit difference equa-
o+l

tion, Eq. (12), has been solved exactly. B is
then given by Eqs. (A-2a) through (A4-2¢),
o+l A .
1y I + Y, (bl - i + b2 AX) (B-1la)
and
ml Ay ;
Bip] T He T A (by - Jg = by %) . (B-1b)

Substituting Eqs. (A~la) through (A-2c) and Eqs.
(B-la) and (B-lb) into the difference equation, Eq.
(12), we find that

bo -a = 2 pt bz{%c + i% (2bl - jc{]. (B-2)

12

To determine the stability of the {teration
scheme, Eq. (17), we add a small perturbation of
wavelength 2Ax and amplitude eu to the diffusion co~

efficient. Then

nt+l,m - A . m
i ¢ TRy By T B by M) o
(B-3a)
and
n+l,m A
> = oty - i - - ‘m
Myt be vy By T g mbp ) -l
(B~-3b)

We assume that this perturbation causes a similar

nl

perturbation of amplitude <y in B . Substituting
Eqs. (A-la) through (A-1lc), Eqs. (A-7a) through



(A-7c), as well as Eqs. (B-3a) and (B-3b) into the

Substituting for y, we obtain the stability

implicit difference equation, Eq. (12), we find

that condition
m _ A o 2
bo 4 + € = 2 At {bZ [“c + Aj (Zbl Jc)] 4 At r e i
<
2= Au 2 A :
N 2 Moy )]} GRSy (A - )[“c +a - Jc):|
- + = = .
+ bl nx 2 Ez;;z [HC AJ 1 c (B-12)
(B-4) The right-hand side of this expression is smallest
for b1 = jc - Aj/2. The stability condition then
We subtract the unperturbed Eq. (B-2) from Eq. becomes
(B-4), solve for QE, and obtain 9
< -1
At A
u <% - . (B-13)
m m 2% j
eb =Y elul > (B'S) (Ax) .A& _l. - 1] + <1 _Z -1
u |\A 53 A
where -
At b1 AX Equation (B-13) is plotted in Fig. B-l for
Y=2 . - : . ,
(AX)2 |+ 4 _AC g + Au (bl -3 A“/“c 1/1.5. 1t is compared against stability
(ax) AJ limits observed experimentally on the computer.
(B-6)
In terms of Bn+l’m,
el'l'l
- ml,m _ Ay . b 10
By -uc+Aj[bl-Jc+(b2 AX-ZE):I T "'”g
B pe ]
(B~7a) (8x12 C 7]
and I _

m
- otl,m _ Au . ‘b |
“i+l . + Aj[%l - Jc - (b2 AX = 2 A% .

(B=-7b)

T TrrrrmT
L1ty

T
1

With these coefficients and using Eq. 17,
un+1,m+1

becomes ol .
ntl,mel _ Ay _ s w1 3
“-i T oM + AJ (bl JC + b2 Ax) + Cu ’ B
(B-8) e, s h
where ap
0.01 NSNS 111l
1 m A 0001 oo! ; 01 1
=e 1- - il - ) -
€y u[( A) 2A A3 Ax] (B-9) %
For stability, it is necessary that 2
Fig. B-1. Implicit limits of ncAt/(pAx)” as fune-
1 m tions of Aj/jc for several values of the
€y = ‘u ’ (8-10) relaxation factor A, with Au/u. = 1/1.5.
The curves are calculated from Eq. (B-13).
that is, The squares are limits observed with
A np = 2, up = 1, and Ax = 0.05.
Al + 238 XL . B-11
rotrn) - -
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